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a b s t r a c t

This paper presents a new and efficient method to calculate point mobilities from

subcomponents of a full structure. Subcomponent modelling is a commonly used

method to gain information on the dynamic behaviour of complex assembly structures

using smaller and more efficient models. For instance, point mobility calculations on

energy analysis (SEA) models. A full system analysis is often too computationally

expensive, so normally only individual subcomponents of the structure are extracted

and analysed. This procedure yields a large reduction in computational effort, but also

often results in a substantial loss of accuracy. This is due to the use of an approximation

of boundary conditions to represent the eliminated remainder part of the structure, i.e.

the full structure except the subcomponent at hand. Commonly, these boundary

conditions are simplified by assuming clamped, free or simply supported edges.

However, this is a huge simplification and may introduce large errors, especially in the

low- and mid-frequency ranges. Earlier work has shown that a more accurate

description of the boundary conditions can be achieved by describing the interface

dynamics by a combination of so-called dynamic waves. In this paper, the method is

developed further and a more robust and efficient wave extraction procedure is

presented. An industrial body in white BIW is used as a test case and results are

presented for three different cases. The results show that the wave-based boundary

condition for point impedance calculations from a subcomponent model gives more

accurate results than the results obtained with free or clamped boundary conditions.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In modern vehicle design processes, the use of computer aided engineering (CAE) has increased dramatically in recent
years. In order to reduce time to market and to minimise the number of prototypes for a vehicle manufacturer, it is crucial
for a design engineer to get early and accurate predictions of the dynamic behaviour of new designs. Low-frequency
methods such as the finite element method (FEM) [1] and the boundary element method (BEM) [2] have, thanks to
increasing computer power, been able to run deterministic models to higher and higher frequencies, while statistical
energy analysis (SEA) [3] has become the standard method for both acoustic and vibration analyses in the high-frequency
range. However, there still exists a frequency gap for which no mature prediction method exists today [4]. In recent years,
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Nomenclature

E time averaged energy
f element load vector (in FEM)
G conductance (real part of mobility)
K FE stiffness matrix
M FE mass matrix
nðoÞ modal density
p vector of wave participation factors
TF transfer function
v velocity
V WBS wave set
W power

WTF power transfer function
x vector of nodal displacement DOFs
Y mobility

bs;diss loss factor
bs;r reciprocal coupling factor
Zs damping loss factor
Zs;r coupling loss factor
j modal power
o angular frequency
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research has focused on filling this gap by applying a number of different approaches. These approaches can be divided into
three subcategories.
�
 Extending the applicable frequency range of the deterministic methods by improving the computational efficiency
(automated multi-level substructuring, AMLS [5], fast multi-pole boundary element method (MPBEM) [6,7], Trefftz-
based methods [8], etc.).

�
 Using standard FE solution schemes and postprocessing the results into SEA like quantities [9–11].

�
 Adding details to the SEA model by the use of finite element analysis (FEA) and enriching your SEA model with

information from FE calculations or measurements [12–15].

This paper will focus on the third group of methods. One limiting factor for this group of methods is the calculation time
for solving large FE models in the mid-frequency range. Another limitation is the loss of accuracy when only
subcomponents are considered. This loss of accuracy depends on the selection of the boundary condition used at the
interface of the subcomponent. Normally the interface dynamics are simplified by applying a free–free, clamped or simply
supported boundary condition, which often is a too large simplification of the actual boundary condition. Therefore a
method to improve the representation of the boundary condition for subcomponents is proposed. It will be shown that
improving the representation of the boundary condition allows capturing the ‘‘true’’ behaviour of the component more
accurately in a subcomponent model.

1.1. State of the art

Many previous papers have reported on combining deterministic methods and SEA in order to lower the applicable
range of SEA. Langley and Bremner [16] developed a method based on partitioning the system into global and local degrees
of freedom. The global problem was solved with normal deterministic methods and the local problem was solved using SEA
equations. The method was further developed by Shorter and Langley [12], who developed a general method to predict
ensemble average responses of complex systems by combining deterministic and statistical techniques. A coupled solution
scheme was developed where the ‘‘stiff’’ components (long wavelength) are modelled with finite element (FE) and the
‘‘soft/flexible’’ components (short wavelength) are modelled with SEA. Deterministic information about the junctions
between subcomponents is also taken into account. There are, however, still problems to be dealt with. For example, for
each subsystem it must be decided whether the subsystem is ‘‘stiff’’ or ‘‘soft’’. This can either be done by using engineering
experience or by performing a large number of subcomponent calculations to investigate whether a specific subsystem
should be considered as ‘‘stiff’’ or ‘‘soft’’ [17,18]. Research is also targeting the possibility to combine finite element and
periodic structure theory to add more detail to the SEA subsystems [17].

In classical SEA, the input parameters are normally evaluated using different analytical formulas that are valid for
simple structures. This theory works well for high frequencies, but when trying to extend the use of SEA towards lower
frequencies, other methods are needed. Lyon and DeJong [3] and later Manning [13,14] have shown that the point
impedances at input and output locations can be used to better estimate the input power and the output response. This is a
well-known method and for many years measurements have been used to obtain a better estimation of these parameters
[19]. Lately the focus has been shifting more towards using FEM to calculate these important parameters. Mace et al.
[10,20] presented a method to calculate the coupling loss factors in a robust way from FE analyses. Similar techniques have
been used in other papers to improve the quality of other important SEA input parameters [15,25]. However, to run a
complete FE calculation into the mid-frequency region is highly time consuming for industrial-sized models. To really
capitalise on the strength of the deterministic methods, the calculation times must be reduced. One way to reduce the
computational effort is to use subcomponent modelling in order to retrieve the important SEA parameters (input and
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response point mobility, coupling loss factors (CLF), etc.) without having to run a calculation of the full model. A
subcomponent can be any part of the complete model of interest. In vehicle analysis this can be for instance a B-pillar or a
section of the floor panel. The goal is to run a fast calculation of a subcomponent and to retrieve a result that is as close as
possible to the result one would expect from a calculation of the full model. Since the subcomponent is a part of a larger
system, a dominant error source will be the boundary condition at the subcomponent interface. A classical way to treat this
interface is to simplify the boundary conditions to a free or a fixed boundary condition [21]. As will be shown in this paper,
this can work well for high frequencies (free BC) and for low frequencies (clamped BC), but for the mid-frequency range
neither of these boundary condition types yields accurate results. Neither do any of these simplified boundary conditions
perform well in the full frequency range. Therefore, improved methods are needed.

Wave-based substructuring (WBS) [22–24] is a substructuring method which uses a set of basis functions (waves) to
describe the behaviour of the interfaces. In this paper a method to derive a boundary condition based on the wave-based
substructuring technique is presented. First, a low-frequency WBS analysis is performed and the remaining structure
(everything except the subcomponent) is reduced to a modal representation. This modal reduction of the remainder is then
projected on the subcomponent via the set of previously calculated waves. As a next step, the low-frequency reduction of
the remainder can be used as ‘‘boundary condition’’ for a subcomponent calculation at higher frequencies. The results are
compared to results obtained in an analysis of a complete FE model of the same structure and with some commonly used
boundary conditions.

1.2. Outline of the paper

To situate the presented method within the state of the art, Section 2 gives a brief introduction to SEA and discusses
how the point mobility approach can be used to improve SEA models. Section 3 presents the theory behind conventional

wave-based substructuring and describes how the method can be used to improve the boundary condition description
for subcomponent analysis. In Section 4 three application cases are presented and the advantage of the wave-based
boundary condition (as compared to free and clamped boundary conditions) is shown. The paper is concluded in
Section 5.

2. SEA theory

2.1. Classical SEA

The analysis procedure using SEA is to divide the studied structure into structural and acoustic subsystems with a
defined level of subsystem damping and coupling between the subsystems. The next step is to set up and to solve the
power balance equation for these subsystems for one or more applied external power input excitations. The power balance
equation for a subsystem s can be written as [3]

Ws;in ¼Ws;diss þ
X
sar

Ws;r ð1Þ

where Ws;in is the input power, Ws;diss is the power dissipated through damping mechanisms in subsystem s, and Ws;r is the
net power transmitted from subsystem s to subsystem r, ðWs;r ¼ �Wr;sÞ. For an SEA model with many subsystems this
equation can be expressed in matrix form where the dissipated power and the transmitted power are expressed in terms of
reciprocal coupling factors bs;r , damping factors bs;diss and modal powers js [13,14,25]:

W1;in

W2;in

^

2
64

3
75 ¼

b1;diss þ
P

sb1;s �b1;2 �b1;3 . . .

�b1;2 b2;diss þ
P

sb2;s �b2;3 . . .

^ ^ &

2
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3
75

j1

j2

^

2
64

3
75 ð2Þ

This matrix is limited-sized, and moreover symmetric and positive definite, so the computational advantages are
obvious in terms of stability and solution speed. Besides this, there is an additional advantage that the coupling
factors and the modal powers are parameters related to quantities that are easy to measure or calculate by FEA or
other hybrid analysis methods. The use of reciprocal coupling factors bs;r (instead of coupling loss factors, CLF) is
thus a key feature for the practical implementation of the SEA-FEA point mobility method described in the following
section.

2.2. SEA-FEA point mobility approach

One frequently studied response in vehicle noise predictions is the transfer function (TF) from an excitation in one part
of the vehicle to the response in another part of the vehicle. Important transfer functions in vehicle NVH are the structural
transfer function from an applied force at an engine mount to the vibration of a floor panel and the structural–acoustic
transfer function to the sound pressure level inside the car cabin near the driver’s ear. The following equations are based on
the formulations presented by Manning [13,14]. First, a dimensionless power transfer function WTF can be obtained by
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defining a new term based on Eq. (2):

WTFs;r ¼
jr

Ws;in
ð3Þ

where WTFs;r is the power transfer function relating the modal power of the response subsystem r to the input power of the
source subsystem s. However, in a typical vehicle development situation, the transfer function of interest is often the
transfer function between the input force and the response velocity, which is also called the transfer mobility function:

TFs;r ¼
vr

Fs
ð4Þ

This transfer mobility function TFs;r can be written as a function of the SEA power transfer function WTFs;r by expressing the
input power as a function of the drive point conductance Gs (real part of the mobility) and the mean square of the applied
force /F2

s S. In classical SEA, the average subsystem conductance is used. The average is then taken over the spatial extent
of the subsystem and over a band of frequencies. However, the relation shown in Eq. (5) can also be applied to single
frequencies and to individual points as long as the proper conductance is used [13,14,26]:

Ws;in ¼ /F2
s SGs ð5Þ

The modal power jr can also be defined as a function of the drive point conductance Gr and the average mean square
velocity /v2

r S of the subsystem:

jr ¼
p
2

/v2
r S

Gr
ð6Þ

Then the square of the transfer function between an input force in subsystem s and the response in subsystem r can be
written as

jTFs;rj
2 ¼

/vrS2

/FsS2
¼

2 �jr � Gr

p �
Gs

Ws;in
¼

2

p � Gs � Gr �WTFs;r ð7Þ

This very useful result gives an expression for the transfer mobility function based only on the power transfer function (SEA
results) and the point conductance for both the excitation and the response point (which can be retrieved from
measurement or FEA). It is also the basis for the point mobility approach presented in this paper and earlier reported in
[13,14]. The point conductance calculations presented in this paper could be used to enhance the results from the SEA
calculations and to enhance the quality of the coupling factors. The relation between coupling factors and point mobilities
has also been shown by Manning:

bs;r ¼
1

2p �
4 � Gs � Gr

jYs þ Yrj
2

ð8Þ

where Y is the complex valued point mobility and again subscript r and s refers to response and source, respectively. In
classical SEA theory, the mobility functions are calculated from expressions for the infinite (or semi-infinite) system. The
accuracy of this approach depends on the averaging bandwidth and the modal overlap factor. The modal overlap is a
function of modal density and damping and the highest value is obtained when both of these parameters are large for a
certain bandwidth. A wide bandwidth and/or high modal overlap result in a lower expected variance of the response from
the mean prediction, so that a high accuracy of the result compared to a measurement is expected. This approach has
shown to be a very accurate approximation for the high-frequency range where the modal overlap generally is high. This is
the underlying reason that SEA has come to be accepted as the standard tool for high-frequency CAE analysis in vehicle
design engineering. For the mid- and low-frequency ranges, where the modal overlap values tend to be smaller, the
definition of the coupling factor in Eq. (8) using expressions for infinite systems may lead to large errors compared to
measured response data [14]. The reason for this is that the smaller modal overlap is, the more the measured response
(averaged over third octave bands) tends to depend on single deterministic phenomena.

By instead using FEA to calculate these point mobility functions, the transfer function accuracy can be improved for the
mid- and low-frequency ranges. This can of course be performed using a full FE model of the investigated system, but if the
system is large (for instance in the case of a car body in white (BIW) or a full vehicle model) the computational cost will
prohibit to stretch the calculations towards higher frequencies. The point mobilities can also be calculated on only a part of
the system [21]. Information about the boundary conditions for the interface between the remainder and the
subcomponent must then be added to the model. Normally, free or clamped boundary conditions are applied, but this
simplification will often lead to results in which some of the dynamic behaviour of the complete system are missed. The
method that will be investigated in this paper is the use of a substructuring technique to capture the dynamic behaviour of
the rest of the system. It will be investigated if a low-frequency substructuring calculation can be used as boundary
condition for a subcomponent analysis in the mid- and high-frequency ranges. The substructuring scheme applied in this
paper is the wave-based substructuring (WBS) technique [22–24]. The strength of this technique is that the number
of interface DOFs is greatly reduced, which makes substructuring feasible even for structures with large interfaces. In
Section 3, the theory of wave-based substructuring is explained.
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3. Wave-based substructuring

Wave-based substructuring (WBS) is a powerful substructuring method in which the dynamic behaviour of the
interfaces is described by a set of basis functions (waves). This reduces the model size compared to conventional
substructuring methods as component mode synthesis (CMS) [27–29] as the number of waves needed to describe the
dynamics of the interfaces is normally much smaller than the number of physical degrees of freedom (DOF) of the
interfaces [22,23]. Instead of connecting the DOFs from two neighbouring subsystems directly via continuity equations,
WBS connects two subsystems via a set of waves. The WBS continuity yields that the complete interface of the two
subsystems can move only as a linear combination of a set of waves (V) weighted by the wave participation factor (p).

3.1. Theory

An undamped system with no external forces can be described by the FE matrix equation:

M €x þ Kx ¼ 0 ð9Þ

If this system is subdivided into non-overlapping substructures, the model can be divided into internal DOFs xi and
junction DOFs xj. The equation of motion can then written as

Mii Mij

Mji Mjj

" #
€x i

€xj

" #
þ

Kii Kij

Kji Kjj

" #
xi

xj

" #
¼

0

fj

" #
ð10Þ

In WBS, the junction DOFs are expressed as a linear combination of a set of waves (V). These waves are weighted with a
participation factor p:

xj ¼ V � p ð11Þ

The equation of motion, Eq. (10), can then be written as

Mii MijV

VT Mji VT MjjV

" #
€x i

€p

" #
þ

Kii KijV

VT Kji VT KjjV

" #
xi

p

" #
¼

0

VT fj

" #
ð12Þ

As in all substructuring methods, continuity and equilibrium conditions must be imposed at the boundaries. For a rigid
connection between two subsystems (a) and (b), continuity of the interface displacement and equilibrium of the reaction
forces are applied:

xðaÞj ¼ xðbÞj and fðaÞj ¼ fðbÞj ð13Þ

Transformed into a WBS framework, the continuity conditions will be

pðaÞ ¼ pðbÞ and VT fðaÞj ¼ VT fðbÞj ð14Þ

Only rigid connections are discussed in this paper. The theory for elastic connections has also been worked out, see Refs.
[22,23].

3.2. WBS calculation procedure

A wave-based substructuring calculation procedure consists of two important calculation steps that differ somewhat
from other substructuring techniques: the wave calculation and the component reduction. The assembly is divided into
internal DOFs xi and junction DOFs xj. The aim of the wave calculation is to calculate a matrix V such that the junction DOFs
can be written as a linear combination of the waves according to Eq. (11).

The wave calculation procedure starts with the calculation of a full modal analysis of the complete structure in the
frequency range of interest. The resulting modal matrix F can be projected onto the junction DOFs, so that the interface
modal displacement matrix Fj is obtained. The individual modal vectors from the full modal analysis F are by definition
orthonormal in the subspace of the entire structure. For the individual interface modal vectors Fj this is, however, not
guaranteed. Two modes with very different displacement shape in another location could, by coincidence, have the same
displacement shape at the interface. These two interface modal vectors will then be linear dependant. Therefore an
orthonormalisation of these vectors must be performed, which aims at selecting the minimum number of vectors (waves)
needed to represent the deformations at the subsystem interface.

To really capitalise on the strength of WBS, a component reduction of at least one of the components must be performed.
WBS uses a variant of the conventional reduction procedure of MacNeal and Rubin [27,28] which consists of calculating the
normal modes of the component in free–free conditions F0 and the residual attachment modes C0 for each junction DOF
(the suffix 0 indicates that they are calculated in a WBS reduction procedure). The conventional reduction procedure is to
apply a unit force to each interface DOF consecutively, keeping the other forces equal to zero. In WBS, a unit force ‘‘wave
load vector’’ VT f j is applied on one of the wave participation factors p, with zero forces on the other wave participation
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factors. This is then repeated for all the wave participation factors. Physically this corresponds to applying a unit force to
the entire interface with a distribution corresponding to the specific wave shape. If the number of wave participation
factors p is smaller than the number of interface DOFs, a smaller number of residual attachment modes are needed to
correctly represent the interface flexibility in assembly conditions, which thus reduces the calculation time. The WBS
assembly can then be calculated by combining the waves, the reduced component and the parts kept as FE components.

3.3. Description of the ‘‘waves’’

Starting from a modal analysis of the full FE model the displacement shapes at the substructure interface Fj can be
defined. This set of displacement shapes is a limited set of basis functions that can be used to describe the structural
dynamics of the interface. In a similar way, the ‘‘waves’’ are basis functions that allow the prediction of the interface
dynamics in a specific frequency range. The waves have the following specification:
�
 The junction DOFs are expressed as a linear combination of a set of waves V, weighted by a participation factor p. The
dimension of the wave matrix is hence n�j nw, with nj the number of junction DOFs of the substructure and nw the
number of wave vectors in V.

�
 Since the waves are a projection of the orthonormal system modes on a subset of the system DOFs, orthonormality of

the waves cannot be guaranteed. Therefore some post-processing of the waves is required, aiming at orthonormalisation
of the waves and at selecting the minimum number of waves needed to represent the dynamics of the interfaces. For
this purpose, one can use singular value decomposition (SVD) to decompose the interface modal displacement shapes
into a set of orthonormal waves. The SVD also ranks the waves in order of importance for spanning the vector space of
interest (i.e. in this case representing the interface dynamics). It is therefore straightforward to apply a threshold and to
select the most relevant waves for the wave set.

�
 Since the wave calculation starts from a full assembly calculation, there is already some a priori knowledge of the

interface dynamics of the complete system (in contrary to classical substructuring techniques).

In conventional WBS, the interface modal displacement shapes are obtained from a full FE analysis of the complete
system. Research is ongoing to lower this requirement, for instance by obtaining the interface modal displacement shapes
only from a smaller subassembly [30]. Furthermore, as will be described later in this paper, it is being investigated whether
the interface modal displacement shapes from a calculation for a limited frequency range can be used instead. The waves
and the reduced remainder from this low-frequency WBS analysis can then be used as boundary condition for an assembly
analysis up to a much higher frequency range.

3.4. Validation example

3.4.1. Case description

Fig. 1 shows an industrial vehicle BIW model [23] (230 183 nodes, 223 323 elements) made of steel (Young’s modulus
E ¼ 210 GPa, Poisson coefficient n ¼ 0:3, mass density r ¼ 7890 kg=m3). The BIW consists of two rigidly connected
substructures:
�
 The B-pillars (14 699 nodes and 13 697 elements).

�
 The body remainder (215 484 nodes and 209 328 elements).

�
 The connection consists of 298 junction nodes (i.e. 1788 junction DOFs).
WBS is applied in a B-pillar design scenario, and the performance and prediction accuracy are compared to classical
substructuring according to MacNeal and Rubin [27,28]. All calculations have been performed on the same computer.

3.4.2. Results

The procedure in Section 3.2 is applied to create a WBS assembly of the B-pillars as full FE and the body remainder as a
WBS-reduced modal model (as shown in Fig. 1d).
�
 A full FE modal analysis is performed in the range ½0;100�Hz; there are 35 modes (incl. 6 rigid body modes).

�
 An SVD orthonormalisation is performed; all 35 waves are kept. After the waves selection, the 35 wave participation

factors are used for the interface representation (substituting 1788 junction DOFs).

�
 The BIW remainder is reduced using the procedure described in brief in Section 3.2 and more thoroughly in [22], by

calculating the substructure modes up to 150 Hz and residual attachment modes only for the 35 wave participation
factors.

�
 A rigid WBS connection is defined to create the WBS assembly.
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Fig. 1. Vehicle B-pillar case: industrial vehicle BIW FE model (a) consisting of two components: the B-pillars (b) and the body remainder (c). The reduced

modal model of interest (d) has the B-pillars in FE representation and a reduced modal model for the vehicle BIW remainder. (a) Full FE model.

(b) B-pillars component. (c) Body remainder component. (d) WBS-reduced assembly model.
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Subsequently, also the conventional substructuring approach of MacNeal and Rubin [27,28] has been used to create a
reduced assembly model as in Fig. 1d.

In Fig. 2, a comparison of the diagonal MAC values between the conventional substructuring technique (MacNeal, Rubin)
and the WBS technique can be seen. The lowest MAC value for the conventional technique is 0.22906 and for WBS
0.999847. The CPU time for the reduction of the component is 54 min for WBS and 26 h 40 min for MacNeal–Rubin.

In summary, WBS offers a clear efficiency and accuracy benefit over the conventional MacNeal reduction procedure,
especially for cases with large interface size between substructures. The reason for this is that WBS allows modelling the
local flexibility at the interface with just a few enrichment vectors (here 35 compared to approximately 1800 for
conventional CMS). It also brings some assembly-level behaviour into the interface description, which gives an increase of
the accuracy of the method [23].
3.5. Using a WBS technique to derive boundary conditions for a subcomponent modelling approach

In this paper, it is investigated whether the WBS procedure can be used for subcomponent analysis in the mid- and
high-frequency ranges. The idea is to perform a WBS calculation for the low- frequency range and to use this low-frequency
information as boundary condition for a component calculation at much higher frequencies. In an FE scheme this is
equivalent to constraining the interface DOFs (of the subcomponent) to move only as a linear combination of the waves
extracted from the low-frequency WBS calculation. Fig. 3 outlines the calculation procedure used in this paper. The idea
with this calculation procedure is to obtain a good and accurate boundary condition for the low-frequency range where the
global behaviour of the structure is important for local point mobilities. At higher frequencies, where the dynamic
behaviour of the subcomponent depends less on the global structure (it is ‘‘locally reacting’’), information about the global
behaviour is not that important to define the boundary condition.
4. Validation of the wave based boundary condition

As discussed in Section 1, a fast and accurate method to perform subcomponent modelling is crucial for using calculated
point mobilities as a tool for evaluating the SEA parameters. In this section, it will be shown that the wave-based boundary
condition, described above, has both these qualities. Three different test cases are presented and the point mobility
functions of each test case are calculated using different techniques to simulate the boundary conditions. The results are
then compared to a reference calculation consisting of a full FE calculation of the complete assembly (BIW) up to the
frequency range of interest (700 Hz). For the new wave-based boundary condition to be successful, it has to be more
accurate in the full frequency range than free and clamped boundary conditions and faster than a full assembly calculation.
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Fig. 2. Vehicle B-pillar case (see Fig. 1): side view if the MAC w.r.t. full FE results of MacNeal (a) and WBS (b).

P. Ragnarsson et al. / Journal of Sound and Vibration 329 (2010) 96–108 103
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Fig. 3. Example of WBS calculation procedure used in this paper.

Fig. 4. The three different subcomponents considered in the paper, extracted from the full model for a clearer view. 1. Back of the roof, 2. B-pillar and 3.

Spare wheel panel.

Fig. 5. The three different subcomponents considered in the paper, with the IO points marked with yellow dots. 1. Back of the roof (34 points), 2. B-pillar

(3 points) and 3. Spare wheel panel (15 points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

P. Ragnarsson et al. / Journal of Sound and Vibration 329 (2010) 96–108104
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Fig. 6. Comparison of spatial averaged point mobilities for different boundary conditions for the back of the roof [(m/s)/N]. The reference result is a full

assembly FE calculation.

Fig. 7. Comparison of spatial and frequency averaged point mobilities for different boundary conditions for the back of the roof [(m/s)/N]. The reference

result is a full assembly FE calculation.

Fig. 8. Comparison of spatial averaged point mobilities for different boundary conditions for the B-pillar [(m/s)/N]. The reference result is a full assembly

FE calculation.

P. Ragnarsson et al. / Journal of Sound and Vibration 329 (2010) 96–108 105
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Fig. 9. Comparison of spatial and frequency averaged point mobilities for different boundary conditions for the B-pillar [(m/s)/N]. The reference result is a

full assembly FE calculation.

Fig. 10. Comparison of spatial averaged point mobilities for different boundary conditions for the spare wheel panel [(m/s)/N]. The reference result is a

full assembly FE calculation.

Fig. 11. Comparison of spatial and frequency averaged point mobilities for different boundary conditions for the spare wheel panel [(m/s)/N]. The

reference result is a full assembly FE calculation.

P. Ragnarsson et al. / Journal of Sound and Vibration 329 (2010) 96–108106
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The three investigated subcomponents are the back part of the roof, the B-pillar and a part of the spare wheel panel, see
Fig. 4.

The model used in this paper is an industrial BIW containing 230 183 nodes and 223 323 elements. Different parts have
been cut out from this model to allow simulating the different subcomponents. A modal analysis has been performed up to
700 Hz and an FRF synthesis has been performed based on the extracted modes. The FE calculation of the modes has been
performed in MSC.Nastran 2004 [31]. The model setup, preprocessing, WBS definition, forced response analysis and
postprocessing have been performed in LMS Virtual.Lab [32]. The response results have been averaged both over frequency
(third octave bands) and spatially (average of the responses for all the IO points on the subcomponent, see Fig. 5).

4.1. Results

The results from the three test cases described above are presented in this section. For each case, the spatial average of
the point mobility (velocity/force) at all IO points has been calculated. In Figs. 6–11 the results are shown both as narrow
band (1 Hz) and as frequency averaged (third octave) results. As expected an almost perfect match between the wave-based
boundary condition and the reference calculation can be seen for the frequency range where a full substructuring
calculation (including a reduction of the remainder) has been performed [0–150 Hz]. For higher frequencies ½4150 Hz�,
where the WBS reduction is not performed (but still used as boundary condition), the results are better than both free and
clamped boundary conditions. It can also be seen that the free boundary condition gives inaccurate results for the low-
frequency region and that the clamped boundary condition has the overall worst performance at high frequencies. It can
also be seen that the wave-based boundary condition seems to work well for all three different types of test cases. While
the free and clamped boundary conditions clearly show its limitations for test case 2. Here the influence from the rest of the
assembly is big and since no information from the assembly is included in the free or clamped boundary conditions, the
true behaviour of the structure cannot be captured. With the wave-based boundary condition, however, some assembly
level information is already included in the boundary condition and the point mobility calculation is much more accurate.

5. Conclusions

As can be seen in the results in Section 4, the calculations with the wave-based boundary condition show, as expected,
an almost perfect match to the reference calculation up to 150 Hz. This is the frequency up to which the wave extraction
and the reduction has been performed. For higher frequencies (150–700 Hz), a region for which no dynamic waves have
been obtained, the results are still good. In this frequency range the WBS reduction obtained from the low-frequency
calculations is used as boundary conditions (boundary constraints). Since the subcomponents tend to be more and more
locally reacting for higher frequencies, the applied boundary condition is less important for higher frequencies. In general,
the results from the calculations with the wave-based boundary condition are better than the results from calculations
with either free or clamped boundary conditions. Furthermore, the computational cost for performing calculations with the
wave-based boundary condition is much smaller than for a full FE calculation of the complete assembly. In WBS, two
‘‘large’’ calculations are needed. First, a full FE analysis of the assembles system must be performed, followed by a reduction
calculation of the remainder. However, if the frequency limit for these two calculations can be kept low (here 150 Hz), the
time consumption will be much less than for one full assembly FE analysis up to 700 Hz. Using free or clamped boundary
conditions instead would of course be much faster, but as has been shown in the calculations presented above, the accuracy
is not always good enough.

Future work will focus on exploring the possibilities to make the calculation procedure even more efficient, either by
lowering the required frequency limit for the wave-based boundary condition calculations or by exploring faster ways to
perform the ‘‘larger’’ WBS calculations. Automated multi-level substructuring (AMLS) [33] will be explored for this
purpose.
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